Exam

on

Manufacturing Systems Modeling and Analysis

Winter Term 2022-2023

Hints:

1. The exam consists of 13 pages (including this front page). Please check that your copy is complete and complain immediately if it is not.
2. Answer all questions and solve all given problems.
3. You are given 60 minutes to work on the exam and you can score a total of 60 points.
4. You may answer the questions using either the German or the English language.
5. Show your work! If you use a formula to solve a problem, present it in its general form first!
6. You may use a single double-sided and hand-written help sheet in letter format or DIN-A4 format with any content you may find helpful to work on the exam.
7. You may use a pocket calculator.

Personal data:

Family name	Given name	Matriculation number	Study program

Rating:

Task	1	2	3	4	Sum
Score					

1. Poisson process, the exponential and the Poisson distribution

Assume that inter-arrival times T at a machine are exponentially distributed with arrival rate $\lambda=\frac{1}{5} \mathrm{~h}^{-1}$.
a) Give for this random variable T the general formulas as well as the concrete numerical values (including appropriate units) of
i. the expected value,
ii. the standard deviation,
iii. and the coefficient of variation.
b) Determine the probability $\operatorname{Prob}(1 \mathrm{~h} \leq T \leq 4 \mathrm{~h})$!
c) Determine the conditional probability $\operatorname{Prob}(T \leq 4 \mathrm{~h} \mid T \geq 1 \mathrm{~h})$!
d) $\operatorname{Determine}$ the conditional probability $\operatorname{Prob}(T \geq 4 \mathrm{~h} \mid T \leq 1 \mathrm{~h})$!
e) Determine the conditional probability $\operatorname{Prob}(T \geq 1 \mathrm{~h} \mid T \geq 4 \mathrm{~h})$!
f) Determine the probability of observing at least three arrivals during a time interval of length 20 hours.
g) In a Poisson arrival process, what is the distribution describing the arrival times? (1 P.))

2. Analysis of Markov chains in continuous time

Consider the following diagram of a CTMC:

a) Give the generator matrix Q of this CTMC!
b) Give (in matrix notation!) the balance equation(s) required to determine the vector of steady-state probabilities π. For any ergodic CTMC, this system of equation always possesses a particular property. Which is it?
c) Give the required normalization constraint for this CTMC!
d) Define first appropriate vectors or matrices and then write down (in matrix notation!) equations that permit us to determine steady state probabilities for the CTMC depicted above!

3. Modeling of flow lines via Continuous Time Markov Chains (CTMCs)

The following tasks related to the analysis of flow lines with limited buffer capacities consist of two parts. Solving the first part first will help you massively to deal with the second.

Always assume in a steady-state system analysis that

- the capacities of buffers holding intermediate products are limited,
- processing times at machines follow exponential distributions,
- machines are reliable, i.e., they never fail,
- upstream machines are never starved,
- upstream machines operate according to a blocking-after-service protocol, and
- downstream machines are never blocked.
a) Consider first a two-machine line as depicted below.

The machine M_{1} upstream of the buffer B_{1} operates with rate μ_{1}. It processes workpieces one-by-one, i.e., it always operates on single workpieces (as we typically assumed in class). The buffer B_{1} behind machine M_{1} can hold C_{1} intermediate workpieces. The downstream machine M_{F} making the final product, however, operates in a batch mode with batch size $b_{F}=3$. It only starts its operation if it has been loaded with $b_{F}=3$ intermediate workpieces. The processing rate of machine M_{F} is μ_{F}. Upon completion of the process on machine M_{F}, a single unit of the final product made from the entire batch of size $b_{F}=3$ of intermediate products leaves the system. Hence the maximum number of intermediate workpieces still in the system that have already been processed by machine M_{1} is $N_{1}=1+C_{1}+3=C_{1}+4$.

Denote with $s=s\left(n_{1}\right)$ the state of the system. Here n_{1} with $0 \leq n_{1} \leq N_{1}$ is the number of work pieces of the intermediate product in the system that have already been processed by machine M_{1}, but not yet by machine M_{F} (and hence have not yet left the system).
i. Assuming $C_{1}=3$, draw the diagram of states and transitions and show which states are transient, if any!
ii. Assume that you have determined the steady-state probabilities π_{n} of being in system state $s(n)$. Now give and explain formulas to determine the following quantities:
A. Throughput $T H_{1}$ in terms of final products via the first machine:
B. Throughput TH_{2} in terms of final products via the second machine:
C. Average inventory \bar{n} in terms of final products :
iii. Now assume that two machines M_{1} and M_{2} with processing rates μ_{1} and μ_{2}, each with a separate downstream buffer B_{1} and B_{2}, respectively, make two different types of intermediate products, which are then assembled in a batch process by machine M_{F} operating with a processing rate μ_{F}. The system structure is shown below.

This batch process requires $b_{F, 1}$ units of the type-1 intermediate products stemming from machine M_{1} and further $b_{F, 2}$ units of the type-2 intermediate product stemming from machine M_{2}, in order to create a single unit of the final product.
Assuming buffer sizes $C_{1}=C_{2}=0$ and batch sizes $b_{F, 1}=b_{F, 2}=2$, draw the diagram of states and transitions!

4. Structural behavior of flow lines

Consider the model of a Markovian flow line with I machines with limited buffer capacities $C_{i}, i=1, \ldots, I-1$ and exponentially distributed processing times, times to failure and repair times with rates $\mu_{i}, p_{i}, r_{i}, i=1, \ldots, I$ which we studied over the course of the semester. Assume that the first machine is never starved, the last never blocked, we have blocking after service and operation-dependent failures. Below you find the system structure for the example of a four-machine line, i.e., $I=4$.

Unless explicitly stated otherwise, assume that all machines have the same processing rates μ, failure rates p, and repair rates r. Likewise, assume that all buffers are of equal size C.
Consider the case of a four-machine line. On the following pages, draw graphs and give explanations about the system behavior as you systematically vary selected system parameters.
a) Assume that we vary the processing rate μ_{2} of the second machine from 0 to $3 \cdot \mu$, while leaving all other system parameters unchanged.
i. Draw and explain the structural behavior of the throughput $T H$ of the entire line over μ_{2}.
(3 P.)
ii. Draw and explain the structural behavior of the average inventory level \bar{n}_{2} of the buffer behind the second machine over μ_{2}.
(3 P.)
b) Assume that we increase the failure rate p_{2} of the second machine starting at $p_{2}=0$, while leaving all other system parameters unchanged.
i. Draw and explain the structural behavior of the throughput $T H$ of the entire line over p_{2}.
ii. Draw and explain the structural behavior of the average inventory level \bar{n}_{2} of the buffer behind the second machine over p_{2}.
(3 P.)
c) Assume that we increase the repair rate r_{2} of the second machine starting at $r_{2}=0$, while leaving all other system parameters unchanged.
i. Draw and explain the structural behavior of the throughput $T H$ of the entire line over r_{2}.
(3 P.)
ii. Draw and explain the structural behavior of the average inventory level \bar{n}_{2} of the buffer behind the second machine over r_{2}.
(3 P.)

