Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber

Klausur zur Veranstaltung "Industrielle Produktionssysteme" im Sommersemester 2014

Hinweise:

- Die Klausur besteht aus **11** Seiten (inkl. Deckblatt). Bitte überprüfen Sie, ob Ihr Exemplar komplett ist und lassen Sie sich ansonsten ein anderes geben.
- Alle Aufgaben in der Klausur sind zu bearbeiten.
- Für jede Aufgabe sind die zu erreichenden Punkte angegeben. Bei einer Klausurdauer von 60 Minuten sind maximal insgesamt 60 Punkte zu erreichen.
- Der Lösungsweg muss erkennbar sein! Wenn Sie zur Beantwortung einer Frage eine Formel verwenden, so geben Sie diese zunächst in allgemeiner Form an!
- Als Hilfsmittel sind ein Taschenrechner, ein nicht vernetzter PC mit Scilab-Programmen Ihrer Wahl und ein beidseitig beschriebenes Hilfsblatt (DIN A4) erlaubt.
- Wichtig: Wenn Sie Berechnungen mit Scilab o.ä. durchführen, dann geben Sie bitte auch die Eingabematrizen und -vektoren an!!!
- Zur Beantwortung der Fragen finden Sie genügend Platz in der Klausur. Bitte reißen Sie die Klausur nicht auseinander und verwenden Sie kein eigenes Papier.
- Tragen Sie bitte zuerst Ihre persönlichen Daten ein.

Persönliche Daten:

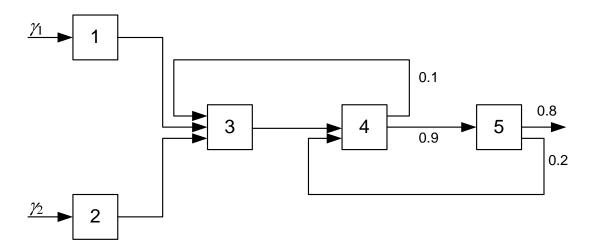
Nachname	Vorname	Matrikelnr.	Studienfach	Semester

Bewertung:

Aufg.	1	2	3	Summe
Punkte				

1. Chargen/Batch-Prozess. (19 P.)

An einer Bearbeitungsstation werden in einem Ofen stets 21 identische Werkstücke gleichzeitig einer Wärmebehandlung unterzogen. Die einzelnen Werkstücke treffen an der Station mit einer Rate von 24 Werkstücken je Stunde ein, der quadrierte Variationskoeffizient der Zwischenankunftszeiten einzelner Werkstücke beträgt 4. Die Bearbeitung startet erst, wenn der Ofen mit 21 Werkstücken voll beladen werden kann, also eine komplette Charge zur Bearbeitung gebildet worden ist. Die Bearbeitungsdauer der Charge in dem Ofen beträgt im Mittel 35 Minuten mit einem quadrierten Variationskoeffizienten von 0,3.


Ermitteln Sie unter Angabe der verwendeten Formeln!!

- (a) die durchschnittliche Durchlaufzeit der Werkstücke durch die Station (inklusive der Zeit für die Chargen-Bildung),
- (b) die durchschnittliche Anzahl wartender Chargen und
- (c) den Erwartungswert und den quadrierten Variationskoeffizienten der Zwischenabgangszeit von Chargen aus dem Ofen.
- (d) Unterstellen Sie nun, dass die Chargen nach der Wärmebehandlung wieder aufgelöst werden und die Werkstücke einzeln zu den nächsten Prozessschritten weitergeleitet werden. Wie groß ist der Erwartungswert und der quadrierte Variationskoeffizient der Zwischenabgangszeit einzelner Werkstücke?
- (e) Wie groß muss die Chargengröße mindestens sein und warum?
- (f) Erläutern Sie, wie sich eine Steigerung der Chargengröße ceteris paribus auf die Komponenten der durchschnittliche Durchlaufzeit der Werkstücke auswirkt!

- 2. Leistungsanalyse von offenen mehrstufigen Ein-Produkt-Produktionssystemen mit unbegrenzten Puffern (29 P.)
 - (a) Rein serieller Materialfluss. Betrachten Sie zunächst den Fall, dass ein rein serieller Materialfluss vorliegt. Geben Sie eine allgemeine Formel zur Berechnung des quadrierten Variationskoeffzienten $c_d^2(i)$ der Zwischenabgangszeiten einer Station i mit einem Server an und erklären Sie diese! Erläutern Sie, ob bzw. wann die Formel exakt ist! (6 P.)

(b) Aufspaltung ("Random Splitting") im Materialfluss. Betrachten Sie nun den Fall, dass nach der Bearbeitung der Werkstücke an einer Station eine zufällige Aufspaltung im Materialfluss erfolgt und jedes Werkstück zufällig mit Wahrscheinlichkeit p zu einer von mehreren nachfolgenden (Ziel-)Bearbeitungsstationen gesendet wird ("Bernoulli-Routing"). Geben Sie allgemeine Formeln zur Berechnung der Ankunftsrate und des quadrierten Variationskoeffizienten der Zwischenankunftszeiten an dieser Ziel-Bearbeitungsstation i an und erklären Sie diese! Erläutern Sie, ob bzw. wann die Formeln exakt sind! (8 P.)

(c) Analyse eines offenen Ein-Produkt-Netzwerks. Analysieren Sie das in der folgenden Abbildung dargestellte Netzwerk aus Arbeitsstationen mit jeweils einem Server zur Herstellung einer einzigen Produktart.

Die externen Ankunftsraten betragen $\gamma_1 = 8/h$ und $\gamma_2 = 5/h$. Bei den externen Ankünften handelt es sich um Poisson-Prozesse. Die Bearbeitungsdauern an allen Stationen sind exponentialverteilt. Die Erwartungswerte der Bearbeitungszeiten an den einzelnen Stationen entnehmen Sie der folgenden Tabelle:

Station i	$E[T_s(i)]$ [h]
1	1/15
2	1/10
3	1/30
4	1/27
5	1/25

Berechnen Sie (ggf. unter Verwendung eines geeigneten Scilab-Programms) für jede Station die Ankunftsrate λ_i , den quadrierten Variationskoeffizienten $c_a^2(i)$ der Zwischenankunftszeit, die Durchlaufzeit CT(i) und den Bestand $WIP_s(i)$. Wie groß ist der Durchsatz des Systems? Begründen Sie, ob diese Ergebnisse exakt sind! (15 P.)

3. Leistungsanalyse eines Systems mit linearem Materialfluss und begrenzten Puffern. (12 P.)

Gegeben ist ein serielles Produktionssystem mit sieben Stationen. Jede Station verfügt über einen Server. Alle Bearbeitungszeiten sind exponentialverteilt. Die Bearbeitungsgeschwindigkeiten μ_i der Stationen entnehmen Sie der folgenden Tabelle:

Station i	$\mu_i [\mathrm{h}^{-1}]$
1	20
2	19
3	18
4	16
5	18
6	19
7	20
-	

Unterstellen Sie zunächst, dass mittels einer Kanban-Produktionssteuerung der maximale (!) Bestand im System auf 31 Werkstücke beschränkt werden soll. Da sich an jeder der sieben Stationen maximal ein Werkstücke befinden kann, wird dies erreicht, wenn zwischen den Stationen 31-7=24 Werkstücke in den Puffern Platz finden können und somit insgesamt 24 Pufferplätze zur Verfügung stehen. Betrachtet wird der Fall, dass alle Puffer gleich groß sind. Gehen Sie davon aus, dass die erste Station nie hungert und die letzte nie blockiert wird.

- (a) Ermitteln Sie nun durch einen geeigneten Dekompositionsansatz, welche Produktionsrate und welcher Gesamtbestand durch diese Systemkonfiguration erreicht wird. (9 P.)
- (b) Begründen Sie, welche strukturelle Eigenschaft bei den gegebenen Daten der Stationen eine (alternative) Pufferverteilung aufweisen muss, die bei gegebener Gesamtzahl der Pufferplätze zur maximalen Produktionsrate führt. (3 P.)